Strictly Conserved Lysine of Prolyl-tRNA Synthetase Editing Domain Facilitates Binding and Positioning of Misacylated tRNAPro
نویسندگان
چکیده
To ensure high fidelity in translation, many aminoacyl-tRNA synthetases, enzymes responsible for attaching specific amino acids to cognate tRNAs, require proof-reading mechanisms. Most bacterial prolyl-tRNA synthetases (ProRSs) misactivate alanine and employ a post-transfer editing mechanism to hydrolyze Ala-tRNA(Pro). This reaction occurs in a second catalytic site (INS) that is distinct from the synthetic active site. The 2'-OH of misacylated tRNA(Pro) and several conserved residues in the Escherichia coli ProRS INS domain are directly involved in Ala-tRNA(Pro) deacylation. Although mutation of the strictly conserved lysine 279 (K279) results in nearly complete loss of post-transfer editing activity, this residue does not directly participate in Ala-tRNA(Pro) hydrolysis. We hypothesized that the role of K279 is to bind the phosphate backbone of the acceptor stem of misacylated tRNA(Pro) and position it in the editing active site. To test this hypothesis, we carried out pKa, charge neutralization, and free-energy of binding calculations. Site-directed mutagenesis and kinetic studies were performed to verify the computational results. The calculations revealed a considerably higher pKa of K279 compared to an isolated lysine and showed that the protonated state of K279 is stabilized by the neighboring acidic residue. However, substitution of this acidic residue with a positively charged residue leads to a significant increase in Ala-tRNA(Pro) hydrolysis, suggesting that enhancement in positive charge density in the vicinity of K279 favors tRNA binding. A charge-swapping experiment and free energy of binding calculations support the conclusion that the positive charge at position 279 is absolutely necessary for tRNA binding in the editing active site.
منابع مشابه
Trans-editing of mischarged tRNAs.
Aminoacyl-tRNA synthetases (aaRSs) are multidomain proteins that specifically attach amino acids to their cognate tRNAs. Their most conserved, and presumably evolutionarily oldest, domains are the catalytic cores, which activate amino acids and transfer them to the 3' ends of tRNAs. Additional domains appended to or inserted in the body of aaRSs increase efficiency and specificity of the aminoa...
متن کاملConformational and chemical selection by a trans-acting editing domain.
Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-e...
متن کاملRestoring species-specific posttransfer editing activity to a synthetase with a defunct editing domain.
Aminoacyl-tRNA synthetases are multidomain proteins responsible for the attachment of specific amino acids to their tRNA substrates. Prolyl-tRNA synthetases (ProRSs) are notable due to their particularly diverse architectures through evolution. For example, Saccharomyces cerevisiae ProRS possesses an N-terminal extension with weak homology to a bacterial-specific domain typically present as an ...
متن کاملBlocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase.
The genetic code is established by the aminoacylation reactions of tRNA synthetases. Its accuracy depends on editing reactions that prevent amino acids from being assigned to incorrect codons. A group of class I synthetases share a common insertion that encodes a distinct site for editing that is about 30 A from the active site. Both misactivated aminoacyl adenylates and mischarged amino acids ...
متن کاملThe structure of alanyl-tRNA synthetase with editing domain.
Alanyl-tRNA synthetase (AlaRS) catalyzes synthesis of Ala-tRNA(Ala) and hydrolysis of mis-acylated Ser- and Gly-tRNA(Ala) at 2 different catalytic sites. Here, we describe the monomer structures of C-terminal truncated archaeal AlaRS, with both activation and editing domains in the apo form, in complex with an Ala-AMP analog, and in a high-resolution lysine-methylated form. The structures show ...
متن کامل